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Repeated observations of the same individuals or other units, which can lead to clustered observations,
are common in animal behaviour research, and mixed models are commonly employed to model and
account for such clustering in the data and avoid pseudoreplication. However, in some cases, while the
data might comprise repeated samples from the same individuals, the precise identity of the individuals
from which samples originated is unknown. In a recent paper Garamszegi (2016, Animal Behaviour, 120,
223e234) suggested an approach to account for pseudoreplication which is based on repeatedly
assigning random subject identities to the samples and then analysing the data using a mixed model or
averaged values for each randomly assigned identity. Here we tested this approach using a simulation
study. We found that the approach suggested by Garamszegi leads to clearly inflated type I error rates
that were essentially the same as those obtained from a naïve linear model simply ignoring individual
identity and that only a model based on the correct subject identities roughly produced the nominal type
I error rate. We conclude that, currently, there is no method available that allows pseudoreplication to be
controlled when subject identities are unknown.

© 2019 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.
Data sets about animal behaviour frequently encompass multi-
ple observations of the same individuals, for instance due to limited
accessibility or availability of study individuals. In such a case one
has to take care to avoid pseudoreplication (Hurlbert 1984;Machlis,
Dodd & Fentres, 1985). Nowadays, frequently used statistical ap-
proaches to avoid pseudoreplication are linear mixed models
(LMM) and generalized linear mixed models (GLMM; e.g. Baayen,
2008; Bates, Maechler, Bolker, & Walker, 2015; Bolker et al.,
2009). These allow the effects of fixed and random effects pre-
dictors to be disentangled. More precisely, for a fixed-effects pre-
dictor (such as ʻsex’, ʻage’ or ʻnutritional state’) they determine how
much the response changes when these increase by one unit, while
for a random-intercepts effect they determine how much the
response varies due to variation between the levels of the random-
effects factor (e.g. ʻindividual’), and for a random-slopes effect they
determine how much the effect of a fixed-effects predictor varies
between the levels of a random-effects factor (e.g. Schielzeth &
opology, Deutscher Platz 6,
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Forstmeier, 2009; Barr, Levy, Scheepers, & Tily, 2013). Finally, it is
also possible to model the correlations between random intercepts
and slopes.

A problem, though, arises when the identity of the individuals
from which observations were made or samples collected is un-
known, as is frequently the case when unmarked and unhabituated
animals are investigated (e.g. Hadinger, Haymerle, Knauer,
Schwarzenberger, & Walzer, 2015). In a recent paper containing
several practical suggestions about dealing with practical limita-
tions typically encountered in behavioural studies, Garamszegi
(2016) proposed that the pseudoreplication issue entailed by un-
known identity of subjects can be tackled by simulation. Specif-
ically, he suggested two possible solutions. One consists of random
assignment of individual identities to samples and the other con-
sists of considering the (spatial or temporal) autocorrelation in the
response. Since the latter approach obviously does not work for
group-living or highly mobile animals (which rapidly change their
spatial configuration to a large extent) the former approach seems
more widely applicable. Regarding this, Garamszegi (2016) sug-
gested that after random assignment of individual identities to
samples one has two options to avoid pseudoreplication: (1)
analyse the averages per (randomly) assigned individual or (2) use
a (G)LMM with the (randomly) assigned individual identity
included as a random effect. Since each specific random assignment
of Animal Behaviour.
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is just one of many possible assignments, and since there is likely to
be uncertainty about the true size of the population from which
samples were taken, he further suggested repeating the random
assignment multiple times and averaging the results.

A problem arising with the suggested approach is the size of the
population fromwhich to sample individual identities. Garamszegi
(2016) suggested two possible approaches representing the end-
points of a continuum: (1) identities are assigned by sampling
random numbers from one to the number of observations (or even
a larger number) or (2) sampling from a population size repre-
senting a fair guess of the actual population size. The former rests
on the assumption that the probability of sampling the same in-
dividual multiple times decreases with an increasing size of the
population sampled from, whereas the latter is presumably more
realistic when the actual population size is small as compared to
the sample size.

Here we investigate whether taking the approach proposed by
Garamszegi (2016) allows one to effectively avoid pseudor-
eplication. To this end we conducted a simulation study. That is, we
simulated data randomly sampled from a limited number of in-
dividuals whereby we varied the amount of variation between in-
dividuals and the population size. We used bothmethods proposed
by Garamszegi (2016; averaging and use of an LMM, both after
random assignment of individual identities) and compared them
with a 'naïve' linear model (ignoring potential pseudoreplication)
and a ʻcorrectly informed’ LMM controlling for the identity of in-
dividuals. We assigned random identities under two scenarios: one
where the actual population size is unknown (and random iden-
tities are sampled from 1 to the number of observations for each
level of the factorial fixed effect of interest) and one where the
actual population size is perfectly known (random identities
sampled from 1 to the actual number of subjects for each level of
the factorial fixed effect of interest). We investigated the perfor-
mance of each approach in terms of the type I error rate (erroneous
significance) and the estimated variation between the levels of the
random effect. We expected that only the correctly informed LMM
would reveal the nominal type I error rate, since only this should be
able to reliably determine the contribution of individual differences
to the observations made.

METHODS

We simulated a study investigating the effect of a between-
subjects factor (which we defined to be the sex of the subject) on
a response variable. We explored three different values for the
actual number of subjects in the studied population (Nsubj ¼ 15, 30,
100). For each individual simulation, we sampledNf females andNm
males (such that Nf þ Nm ¼ Nsubj) with equal probabilities for an
individual being female or male. All simulations involved Nobs ¼
100 observations, with every subject having the same probability of
being observed. This sampling strategy implies that not all subjects
will necessarily be observed at least once within a given simulation
(especially so when Nsubj ¼ 100).

No effect of sex was simulated. The expected average value of
the response variable for each subject was sampled from a centred
normal distribution (i.e. one with a mean of zero) whose standard
deviation was SDsubj. The final value of the response variable was
obtained by summing to these expected averages residual errors
that were randomly sampled from a centred normal distribution
with a standard deviation SDres ¼ 1. We explored four different
values for the magnitude of the variation across subjects, ranging
from almost negligible to very strong: SDsubj ¼ 0.25, 0.5, 1, 2. In
terms of repeatability, these values correspond to adjusted intra-
class correlations (ICC) of 0.06, 0.2, 0.5, 0.8, respectively. ICC was
calculated according to equation 2.7 in Nakagawa, Johnson, and
Schielzeth (2017). We simulated 500 data sets for each combina-
tion of Nsubj and SDsubj (3 � 4 � 500 ¼ 6000 data sets).

For each data set, the statistical significance of the effect of sex
was determined according to six approaches. First, we fitted a
correctly informed LMM comprising a term for the random inter-
cept of subject whereby the identity of the subject was correctly
assigned for each observation (response ~ sex þ (1 j subject iden-
tity)). This is the ʻcorrectly informed’ model that should reveal the
expected type I error rate of 0.05 for the effect of ʻsex’ and serves as
a benchmark to compare the other models with. Second, we fitted a
naïve linear model in which the identity of subjects was ignored
altogether (response ~ sex). This model reveals the type I error rate
when the analysis is simply pseudoreplicated (note that this model
is fully equivalent to an independent-samples t test). Then we fol-
lowed the two approaches proposed by Garamszegi (2016),
assigning random identities to each observation (with the condi-
tion that the same identity could only be assigned to individuals of
the same sex) and fitting (1) a linear model on the per-subject
averages (‘random means’) and (2) an LMM with a random inter-
cept term for subject (‘random LMM’). Both approaches were based
on individual identities randomly assigned to the data. Each of
these two approaches was carried out in two variants. In the first
variant, the actual population size was unknown and the random
identities for each observation were sampled from 1 to Nf_obs and 1
to Nm_obs, respectively, for observations of females and males (with
Nf_obs and Nm_obs being the number of observations of females and
males, rather than the actual number of female and male subjects).
In the second variant the actual population size, as well as the
actual number of female and male subjects, was known (which
corresponds to the very favourable case of exactly guessing the
actual population size), and the random identities for each obser-
vation were sampled from 1 to Nf and 1 to Nm, respectively, for
observations of females and males. For both the ‘random averages’
and ‘random LMM’ approach, we generated 100 random assign-
ments of individual identities for each simulated data set.

All simulations and analyses were carried out in the R statistical
environment (R version 3.4.4; R Core Team, 2018). Linear models
were fitted using the lm function and LMMs using the lmer function
of the package lme4 (version 1.1e17; Bates et al., 2015). Statistical
significance (P value) was assessed using the standard summary
function for linear models and the function drop1 for mixedmodels
(which conducts a likelihood ratio test comparing the full model
with one lacking sex; Barr et al., 2013). For the ‘randommeans’ and
‘random LMM’ approach, the P value for each simulated data set
was obtained by averaging across the 100 random assignments. The
significance threshold was set at a ¼ 0.05. We evaluated the
models' type I error rate, that is, we determined the probability of
rejecting the (true) null hypothesis of no effect of sex on the
response variable as the proportion of tests revealing P � a. Note
that we based our assessment on averaged P values although this
approach was not explicitly suggested by Garamszegi (2016), who
rather suggested an evaluation of the estimated coefficients as a
means to gauge their ‘uncertainty due to the unknown identity of
subjects’. Since this is not equivalent to a confidence interval of the
effect, and most researchers would probably want a means of
inference, we chose to base our investigation on P values. The R
code for the simulations is available as Supplementary material.

RESULTS

As expected, the ‘correctly informed’ mixed model was able to
account for the effect of intersubject variation, as its type I error rate
did not show any obvious correlation with the magnitude of the
variation between subjects (Fig. 1). Type I errors obtained by this
approach were never much higher than the expected a of 0.05.
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Figure 1. Frequency of type I errors over 500 simulations as a function of individual repeatability (proportion of total variance due to between-subjects variation) for six different
statistical approaches (see main text for details). All simulated data sets comprised 100 observations. For ‘random means’ and ‘random LMM’ approaches, results from 100 random
assignments of subject identities were averaged for each simulation. (a) Actual population size ¼ 15 (mean number of observed individuals ¼ 14.98); (b) actual population size ¼ 30
(mean number of observed individuals ¼ 29.01); (c) actual population size ¼ 100 (mean number of observed individuals ¼ 63.29).
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However, our simulations revealed a slight but consistent excess of
type I errors when the number of subjects was small (Fig. 1). The
‘naïve’ linear model (in which the identity of subjects was simply
ignored) showed an increasing excess of type I errors when the
magnitude of the variation between subjects increased. The excess
of type I errors was low or negligible when the variation across
subjects was small and/or the actual number of subjects was high in
relation to the number of observations (so that the probability of
observing the same subject multiple times was low, Fig. 1; see also
Mundry&Oelze, 2016). However, a very large excess of type I errors
was observed with large intersubject variation and a relatively low
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Figure 2. Estimated standard deviations for the random effect of subject (SDsubj). The Gauss
for the correctly informed (black line and dark shading) and the random LMM (with know
between intersubject variation and residual error (SDsubj/SDres ¼ 1, repeatability ¼ 0.5; the
known; (b) actual population size is 15 and unknown; (c) actual population size is 30 and
number of subjects, with the probability of rejecting the true null
hypothesis becoming as high as ca. 50% (Fig. 1).

Type I errors obtained from the ‘random LMM’ approach pro-
posed by Garamszegi (2016) were essentially identical to those of
the ‘naïve’ linear model, being just marginally lower when the
actual population sizes for each sex were both known and low
(Fig. 1). Compared to the ‘random LMM’ approach, the frequency of
type I errors was slightly lower in the ‘randommeans’ approach. In
fact, this difference in frequency of type I errors did not vary with
the magnitude of intersubject variation or actual number of sub-
jects (Fig. 1). Consistently, the frequency of type I errors obtained by
subj
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the ‘random means’ approach was lower than a when the simu-
lated data were close to a set of independent observations (i.e. low
intersubject variation, high actual number of subjects; Fig. 1). In
addition, the ‘knownpopulation size’ variant of the ‘randommeans’
approach resulted in fewer significant tests than the ‘unknown
population size’ variant when the actual population size was lower
than the number of observations (Nsubj ¼ 15 and Nsubj ¼ 30; Fig. 1).
In fact, in these cases, the number of data points (randomized
subjects) for the ‘known population size’ variant was lower than for
the ‘unknown population size variant’ (when the number of ob-
servations was equal to the number of subjects the two variants
were almost identical).

Regarding the estimated standard deviation of the random ef-
fect, we found this to be biased in the random LMM approach. In
fact, individual variation was usually greatly underestimated,
regardless of population size and whether it was known or not
(Fig. 2). For the correctly informed LMM this was not the case.

DISCUSSION

We found that the naïve linearmodel produced type I error rates
that correlated positively with the level of pseudoreplication and
the magnitude of variation between individuals, and for larger
levels of pseudoreplication and/or variation between individuals
these were highly inflated. This result confirms the detrimental
effects of pseudoreplication and is in line with a large body of
literature reporting similar findings (e.g. Hurlbert 1984; Machlis,
Dodd & Fentres, 1985). We also found that the use of the
correctly informed LMM led to the nominal type I error rate of 0.05
when the number of subjects was not too small. However, for a
small number of individuals, the correctly informed LMM also
produced slightly elevated type I error rates of up to almost 0.1. This
is probably because the chi-square approximation of the likelihood
ratio test statistic (Barr et al., 2013) we used is known to perform
well only for large samples (e.g. Bolker, 2008, pp. 13, 194). This
interpretation is supported by the finding that for larger samples
the type I error rate approached the nominal level.

We found that the LMM with randomly assigned individual
identities had a highly inflated type I error rate that could be as
large as 0.5 and virtually identical to that of the naïve linear model
when the population size was unknown and only slightly reduced
when it was known. Hence, using randomly assigned individual
identities does not account for pseudoreplication at all. This was
also reflected in the results regarding the estimated contribution of
the random effect which was clearly underestimated for the LMM
with randomly assigned individual identities. Using averages per
randomly assigned individual also led to a highly elevated type I
error rate; the fact that it was slightly below that of the naïve LMM
obviously arose from a reduced sample size due to the averaging.
Only when the population size was large compared to the number
of samples, leading to a low number of individuals sampled
repeatedly (and probably lowaverage numbers of replicate samples
per individual), did type I error rates of the approaches proposed by
Garamszegi (2016) come closer to the nominal type I error rate of
0.05, but theywere still clearly above it and virtually identical to the
naïve approach. The only case in which the approach proposed by
Garamszegi (2016) led to type I error rates close to the nominal 0.05
was when the amount of variation between individuals was low.
This result is not surprising since, in such a case, interindividual
variation does not contribute much to the response (i.e. observa-
tions are close to being independent). On the other hand, it seems
obvious that an LMM conducted on data in which there are dif-
ferences between individuals but with individual identities
randomly assigned to observations will underestimate the contri-
bution of variation between individuals. Hence, neither of the two
approaches based on random assignment of individuals to samples
can be recommended, since both lead to an inflated type I error
rate. Instead, one must rely on a correctly informed LMM, which is
obviously only possible when individual identities are known.
When these are not known, the approach proposed by Garamszegi
(2016) does not alleviate the problem of pseudoreplication.

The simulationwe used here assumed the predictor of interest to
vary between individuals but not within them, and hence the
question arises what one would expect for a predictor of interest
varying within subjects. First, our results showed that only the
correctly informed LMM could reliably disentangle variation due to
differences between individuals and the influence of a fixed effect
and there is no reason why this should be different when the fixed
effect varies within rather than between individuals. However,
Mundry and Oelze (2016) recently reported that in such a case
pseudoreplication can lead to an inflation of both type I and type II
error rates. Hence it seems likely that the same is the casewhenusing
the approaches proposed by Garamszegi (2016) in such a situation.

To summarize, for data that are likely to comprise repeated
observations of the same individuals but with the identity of the
individuals from which data were collected unknown, there is
currently no method available that allows one to avoid the conse-
quences of pseudoreplication (i.e. a potentially drastically inflated
type I error rate). In fact, the methods proposed by Garamszegi
(2016) produced type I error rates that were largely identical to
those of a model that was simply pseudoreplicated (i.e. the 'naïve'
model). Actually, the slightly reduced type I error rates observed
with the ‘random means’ approach (still clearly above the nominal
type I error rate of 0.05) depend on the reduced sample size and
must be expected to come at the cost of increased type II error.
Hence, such data currently do not allow a robust analysis. However,
even though it seems unlikely to us, an approach building upon
Garamszegi's (2016) proposition to base inference on the variation
in the estimated coefficients might reveal a different pattern.
Hence, future research is warranted.
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